Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 545
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38689738

RESUMEN

Ticks and tick-borne diseases (TBD) are a growing threat for human and animal health worldwide with high incidence in African countries such as Uganda where it affects cattle health and production. Considering recent advances in bibliometric analysis, in this review we used a bibliometric descriptive approach for the analysis of publications and patents in the fields of ticks, TBD, and vaccines in Uganda. The results showed that major gaps and limitations are associated with (i) low contributions from Ugandan institutions, (ii) limited international collaborations, (iii) poor impact of translational research, and (iv) little research on tick control vaccines. The results were then used to propose future directions to approach these limitations in Uganda. Although ongoing initiatives and international collaborations are contributing to address major gaps and limitations, future directions should advance in these collaborative projects together with new initiatives addressing (i) basic and translational research on TBD such as CCHF and ASF, (ii) participation of Ugandan institutions in new international consortia in this area, (iii) promoting communication of these initiatives to Ugandan cattle holders and general population to attract support from public and private sectors, (iv) stimulate and support scientific publications and patents with participation of Ugandan scientists, and (v) build and implement production capacity for vaccines in Uganda. These results contribute to guiding Ugandan scientists and national authorities to face challenges posed by ticks and TBD with implications for other African countries.

2.
Parasitology ; : 1-8, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38586999

RESUMEN

Ticks represent a major concern for society worldwide. Ticks are also difficult to control, and vaccines represent the most efficacious, safe, economically feasible and environmentally sustainable intervention. The evolution of tick vaccinology has been driven by multiple challenges such as (1) Ticks are difficult to control, (2) Vaccines control tick infestations by reducing ectoparasite fitness and reproduction, (3) Vaccine efficacy against multiple tick species, (4) Impact of tick strain genetic diversity on vaccine efficacy, (5) Antigen combination to improve vaccine efficacy, (6) Vaccine formulations and delivery platforms and (7) Combination of vaccines with transgenesis and paratransgenesis. Tick vaccine antigens evolved from organ protein extracts to recombinant proteins to chimera designed by vaccinomics and quantum vaccinomics. Future directions will advance in these areas together with other novel technologies such as multiomics, AI and Big Data, mRNA vaccines, microbiota-driven probiotics and vaccines, and combination of vaccines with other interventions in collaboration with regions with high incidence of tick infestations and tick-borne diseases for a personalized medicine approach.

3.
Vaccine ; 42(11): 2801-2809, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508929

RESUMEN

Ticks as obligate blood-feeding arthropod vectors of pathogenic viruses, bacteria, protozoa and helminths associated with prevalent tick-borne diseases (TBDs) worldwide. These arthropods constitute the second vector after mosquitoes that transmit pathogens to humans and the first vector in domestic animals. Vaccines constitute the safest and more effective approach to control tick infestations and TBDs, but research is needed to identify new antigens and improve vaccine formulations. The tick protein Subolesin (Sub) is a well-known vaccine protective antigen with a highly conserved sequence at both gene and protein levels in the Ixodidae and among arthropods and vertebrates. In this study, transcriptomics and proteomics analyses were conducted together with graph theory data analysis in wild type and Sub knockdown (KD) tick ISE6 cells in order to identify and characterize the functional implications of Sub in tick cells. The results support a key role for Sub in the regulation of gene expression in ticks and the relevance of this antigen in vaccine development against ticks and TBDs. Proteins with differential representation in response to Sub KD provide insights into vaccine protective mechanisms and candidate tick protective antigens.


Asunto(s)
Infestaciones por Garrapatas , Enfermedades por Picaduras de Garrapatas , Garrapatas , Vacunas , Animales , Humanos , Garrapatas/microbiología , Mosquitos Vectores , Antígenos , Infestaciones por Garrapatas/prevención & control , Proteínas de Artrópodos/genética , Enfermedades por Picaduras de Garrapatas/prevención & control
4.
Vaccine ; 42(3): 403-409, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38184390

RESUMEN

Based on previous evidence demonstrating the efficacy of inactivated mycobacteria for the control of fish mycobacteriosis, we explored the protective efficacy of two inactivated Mycobacterium bovis administered via parenteral and mucosal routes against Mycobacterium marinum infection mimicking natural conditions in the zebrafish model of tuberculosis. Although we did not observe a clear effect of any of the immunostimulants on mycobacterial burden, the results showed a significant increase in TLR2 and TLR4 gene expression levels in fishes parenterally immunized with inactivated Bacillus Calmette-Guérin (BCG). Our findings demonstrated that the TLR2 and the TLR4 signaling pathways are involved in the immune response elicited by inactivated mycobacteria in the zebrafish model of tuberculosis and support the use of inactivated mycobacteria in vaccine formulations for the control of mycobacteriosis.


Asunto(s)
Mycobacterium bovis , Tuberculosis , Animales , Receptor Toll-Like 2 , Pez Cebra , Receptor Toll-Like 4 , Calor , Vacuna BCG
5.
Acta Trop ; 249: 107040, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37839669

RESUMEN

Anaplasma species are obligate intracellular rickettsial pathogens that cause significant diseases in animals and humans. Despite their importance, limited information on Anaplasma infections in Algeria has been published thus far. This study aimed to assess the infection rate, characterize Anaplasma species, and identify associated risk factors in selected sheep farms across Oum El Bouaghi region in Algeria. In 2018, we collected 417 blood samples from sheep (Ovis aries) and performed molecular characterization of Anaplasma species infecting these animals. This characterization involved the use of 16S rRNA, msp2, rpoB, and msp5 genes, which were analyzed through nested PCR, qPCR, cPCR, DNA sequencing, and subsequent phylogenetic analysis. Our findings revealed infection rates of 12.7 % for Anaplasma species detected, with Anaplasma ovis at 10.8 %, Anaplasma marginale at 1.7 %, and Anaplasma platys at 0.2 %. Interestingly, all tested animals were found negative for Anaplasma phagocytophilum. Statistical analyses, including the Chi-square test and Fisher exact test, failed to establish any significant relationships (p > 0.05) between A. ovis and A. platys infections and variables such as age, sex, sampling season, and tick infestation level. However, A. marginale infection exhibited a significant association with age (p < 0.05), with a higher incidence observed in lambs (5.2 %) compared to other age groups. Remarkably, this study represents the first molecular detection of A. platys and A. marginale in Algerian sheep. These findings suggest that Algerian sheep may serve as potential reservoirs for these pathogens. This research contributes valuable insights into the prevalence and characteristics of Anaplasma infections in Algerian sheep populations, emphasizing the need for further investigation and enhanced surveillance to better understand and manage these diseases.


Asunto(s)
Anaplasma marginale , Anaplasmosis , Humanos , Animales , Ovinos , Anaplasma marginale/genética , Anaplasmosis/epidemiología , ARN Ribosómico 16S/genética , Argelia/epidemiología , Filogenia
6.
Ann Med ; 55(2): 2286336, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38010090

RESUMEN

Artificial intelligence (AI) and machine learning (ML) are revolutionizing human activities in various fields, with medicine and infectious diseases being not exempt from their rapid and exponential growth. Furthermore, the field of explainable AI and ML has gained particular relevance and is attracting increasing interest. Infectious diseases have already started to benefit from explainable AI/ML models. For example, they have been employed or proposed to better understand complex models aimed at improving the diagnosis and management of coronavirus disease 2019, in the field of antimicrobial resistance prediction and in quantum vaccine algorithms. Although some issues concerning the dichotomy between explainability and interpretability still require careful attention, an in-depth understanding of how complex AI/ML models arrive at their predictions or recommendations is becoming increasingly essential to properly face the growing challenges of infectious diseases in the present century.


AI and ML are revolutionizing human activities in various fields, and infectious diseases are not exempt from their rapid and exponential growth.Despite some notable challenges, explainable AI/ML could provide insights into the decision-making process, making the outcomes of models more transparent.Improved transparency can help to build trust among healthcare professionals, policymakers, and the general public in leveraging AI/ML-based systems to face the growing challenges of infectious diseases in the present century.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , Inteligencia Artificial , Aprendizaje Automático , Enfermedades Transmisibles/diagnóstico , Algoritmos
7.
Exp Appl Acarol ; 91(4): 661-679, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37973690

RESUMEN

Ectoparasites, such as ticks, modulate host population dynamics by impacting demographic traits. They transmit infectious agents among their hosts, posing a critical threat to animal and public health. This study aimed to characterize and analyze the Hyalomma aegyptium infestation on one of its main hosts, the spur-thighed tortoise, its effects on demographic traits, and to determine the diversity of infectious agents present in both ticks and tortoises in the Maamora forest (northwestern Morocco). Our results show that 100% of the tortoises were parasitized by adult ticks in spring, an infestation intensity of 4 ticks/tortoise (5.1 and 3.6 ticks/tortoise in males and females, respectively; 4.2 and 3.3 ticks/tortoise in gravid and non-gravid females, respectively) and an abundance ranging from 1 to 12. Although without significant differences, male tortoises had higher tick abundances than females. The interaction of tortoise sex and body condition was significantly related to tick abundance, male body condition decreased with higher tick abundance in contrast to females. Nevertheless, the interaction of body condition and reproductive stage of females was not significantly related to tick abundance. Gravid females were significantly associated with tick abundance, showing a slightly higher infestation than non-gravid females. Molecular analysis of pooled tick samples revealed the presence of Ehrlichia ewingii, Candidatus Midichloria mitochondrii, and Rickettsia africae, with a minimum infection rate of 0.61 to 1.84%. However, blood sample analysis of the tortoises was infectious agent-free, pinpointing a lack of significant health problems. Given the possible effect on the transmission of zoonotic diseases by spur-thighed tortoises associated with their frequent collection as pets, it should be surveyed to control possible human health problems. In conservation terms, as a long-lived species, the role of tick infestation in demographic traits might be included in the management and conservation programs of spur-thighed tortoises.


Asunto(s)
Infestaciones por Garrapatas , Garrapatas , Tortugas , Femenino , Masculino , Animales , Humanos , Infestaciones por Garrapatas/epidemiología , Infestaciones por Garrapatas/veterinaria , Infestaciones por Garrapatas/parasitología , Proyectos Piloto , Dinámica Poblacional
8.
Pathogens ; 12(11)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38003808

RESUMEN

This study addresses the variability of the mitochondrial cytochrome oxidase subunit I (COI) and 16S rDNA (16S), and nuclear internal transcriber spacer ITS2 (ITS2) genes in a set of field-collected samples of the cattle tick, Rhipicephalus microplus (Canestrini, 1888), and in geo-referenced sequences obtained from GenBank. Since the tick is currently considered to be a complex of cryptic taxa in several regions of the world, the main aims of the study are (i) to provide evidence of the clades of the tick present in the Neotropics, (ii) to explore if there is an effect of climate traits on the divergence rates of the target genes, and (iii) to check for a relationship between geographical and genetic distance among populations (the closest, the most similar, meaning for slow spread). We included published sequences of Rhipicephalus annulatus (Nearctic, Afrotropical, and Mediterranean) and R. microplus (Afrotropical, Indomalayan) to fully characterize the Neotropical populations (total: 74 16S, 44 COI, and 49 ITS2 sequences included in the analysis). Only the clade A of R. microplus spread in the Nearctic-Neotropics. Both the K and Lambda's statistics, two measures of phylogenetic signal, support low divergence rates of the tested genes in populations of R. microplus in the Neotropics. These tests demonstrate that genetic diversity of the continental populations does not correlate either with the geographic distance among samples or with environmental variables. The low variability of these genes may be due to a combination of factors like (i) the recent introduction of the tick in the Neotropics, (ii) a large, effective, and fast exchange of populations, and (iii) a low effect of climate on the evolution rates of the target genes. These results have implications for the ecological studies and control of cattle tick infestations.

9.
Ann Med ; 55(2): 2286531, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38010429

RESUMEN

OBJECTIVE: Vector-borne diseases are a growing burden worldwide. In particular, the risks of allergic reactions to bites are associated with growing arthropod populations in contact with the public. The diversity of allergic reactions associated with host and arthropod factors difficult disease diagnosis, prognosis and prevention. Therefore, arthropod-associated allergies are underdiagnosed and require better surveillance of arthropod populations and disease diagnosis and management. METHODS: To face these challenges, in this study, we describe five cases to illustrate arthropod-associated allergies with different symptomatology, including alpha-gal syndrome (AGS) associated with anti-alpha-gal IgE antibody titres. Information on symptoms in response to arthropod bites was collected from patients and medical doctors. RESULTS: The five cases included patients bitten by a robber fly and different tick species. Cases were in Spain or U.S.A. Two cases were diagnosed with AGS and one case was diagnosed with anaphylaxis in response to tick bite with high anti-alpha-gal IgE levels. The symptoms in response to arthropod bites vary between different cases. CONCLUSION: Allergic reactions and symptoms in response to arthropod bites vary in association with host and arthropod factors. Herein we propose recommendations to control allergic symptoms, associated disease risk factors and the way forward to advance in the prevention and control of arthropod-associated allergies.


Asunto(s)
Anafilaxia , Artrópodos , Hipersensibilidad a los Alimentos , Animales , Humanos , Inmunoglobulina E , Hipersensibilidad a los Alimentos/epidemiología , Hipersensibilidad a los Alimentos/etiología , Anafilaxia/etiología , Anafilaxia/complicaciones
10.
Biomed Pharmacother ; 168: 115829, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37922649

RESUMEN

The alpha-Gal syndrome (AGS) is a tick-borne allergy. A multi-omics approach was used to determine the effect of tick saliva and mammalian meat consumption on zebrafish gut transcriptome and proteome. Bioinformatics analysis using R software was focused on significant biological and metabolic pathway changes associated with AGS. Ortholog mapping identified highly concordant human ortholog genes for the detection of disease-enriched pathways. Tick saliva treatment increased zebrafish mortality, incidence of hemorrhagic type allergic reactions and changes in behavior and feeding patterns. Transcriptomics analysis showed downregulation of biological and metabolic pathways correlated with anti-alpha-Gal IgE and allergic reactions to tick saliva affecting blood circulation, cardiac and vascular smooth muscle contraction, behavior and sensory perception. Disease enrichment analysis revealed downregulated orthologous genes associated with human disorders affecting nervous, musculoskeletal, and cardiovascular systems. Proteomics analysis revealed suppression of pathways associated with immune system production of reactive oxygen species and cardiac muscle contraction. Underrepresented proteins were mainly linked to nervous and metabolic human disorders. Multi-omics data revealed inhibition of pathways associated with adrenergic signaling in cardiomyocytes, and heart and muscle contraction. Results identify tick saliva-related biological pathways supporting multisystemic organ involvement and linking α-Gal sensitization with other illnesses for the identification of potential disease biomarkers.


Asunto(s)
Fenómenos Biológicos , Hipersensibilidad a los Alimentos , Garrapatas , Animales , Humanos , Pez Cebra , Saliva , Multiómica , Mamíferos
11.
Pathogens ; 12(10)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37887774

RESUMEN

In this comprehensive review study, we addressed the challenge posed by ticks and tick-borne diseases (TBDs) with growing incidence affecting human and animal health worldwide. Data and perspectives were collected from different countries and regions worldwide, including America, Europe, Africa, Asia, and Oceania. The results updated the current situation with ticks and TBD and how it is perceived by society with information bias and gaps. The study reinforces the importance of multidisciplinary and international collaborations to advance in the surveillance, communication and proposed future directions to address these challenges.

12.
Vet Microbiol ; 286: 109892, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37866329

RESUMEN

Ticks are the main vectors for the transmission of bacterial, protist and viral pathogens in Europe affecting wildlife and domestic animals. However, some of them are zoonotic and can cause serious, sometimes fatal, problems in human health. A systematic review in PubMed/MEDLINE database was conducted to determine the spatial distribution and host and tick species ranges of a selection of tick-borne bacteria (Anaplasma spp., Borrelia spp., Coxiella spp., and Rickettsia spp.), protists (Babesia spp. and Theileria spp.), and viruses (Orthonairovirus, and flaviviruses tick-borne encephalitis virus and louping ill virus) on the European continent in a five-year period (November 2017 - November 2022). Only studies using PCR methods were selected, retrieving a total of 429 articles. Overall, up to 85 species of the selected tick-borne pathogens were reported from 36 European countries, and Anaplasma spp. was described in 37% (159/429) of the articles, followed by Babesia spp. (34%, 148/429), Borrelia spp. (34%, 147/429), Rickettsia spp. (33%, 142/429), Theileria spp. (11%, 47/429), tick-borne flaviviruses (9%, 37/429), Orthonairovirus (7%, 28/429) and Coxiella spp. (5%, 20/429). Host and tick ranges included 97 and 50 species, respectively. The highest tick-borne pathogen diversity was detected in domestic animals, and 12 species were shared between humans, wildlife, and domestic hosts, highlighting the following zoonotic species: Anaplasma phagocytophilum, Babesia divergens, Babesia microti, Borrelia afzelii, Borrelia burgdorferi s.s., Borrelia garinii, Borrelia miyamotoi, Crimean-Congo hemorrhagic fever virus, Coxiella burnetii, Rickettsia monacensis and tick-borne encephalitis virus. These results contribute to the implementation of effective interventions for the surveillance and control of tick-borne diseases.


Asunto(s)
Babesia , Borrelia , Virus de la Encefalitis Transmitidos por Garrapatas , Ixodes , Rickettsia , Theileria , Enfermedades por Picaduras de Garrapatas , Animales , Humanos , Babesia/genética , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Anaplasma/genética , Coxiella , Ixodes/microbiología , Ixodes/parasitología , Borrelia/genética , Rickettsia/genética , Animales Domésticos , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/veterinaria , Enfermedades por Picaduras de Garrapatas/microbiología , Animales Salvajes
13.
Epidemiol Infect ; 151: e188, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37886846

RESUMEN

We used primary care data to retrospectively describe the entry, spread, and impact of COVID-19 in a remote rural community and the associated risk factors and challenges faced by the healthcare team. Generalized linear models were fitted to assess the relationship between age, sex, period, risk group status, symptom duration, post-COVID illness, and disease severity. Social network and cluster analyses were also used. The first six cases, including travel events and a social event in town, contributed to early infection spread. About 351 positive cases were recorded and 6% of patients experienced two COVID-19 episodes in the 2.5-year study period. Five space-time case clusters were identified. One case, linked with the social event, was particularly central in its contact network. The duration of disease symptoms was driven by gender, age, and risk factors. The probability of suffering severe disease increased with symptom duration and decreased over time. About 27% and 23% of individuals presented with residual symptoms and post-COVID illness, respectively. The probability of developing a post-COVID illness increased with age and the duration of COVID-associated symptoms. Carefully registered primary care data may help optimize infection prevention and control efforts and upscale local healthcare capacities in vulnerable rural communities.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Población Rural , SARS-CoV-2 , Estudios Retrospectivos , Atención a la Salud
14.
Ir Vet J ; 76(Suppl 1): 24, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737206

RESUMEN

Two characteristics of the Mycobacterium tuberculosis complex (MTC) are particularly relevant for tuberculosis (TB) epidemiology and control, namely the ability of this group of pathogens to survive in the environment and thereby facilitate indirect transmission via water or feed, and the capacity to infect multiple host species including human beings, cattle, wildlife, and domestic animals other than cattle. As a consequence, rather than keeping the focus on certain animal species regarded as maintenance hosts, we postulate that it is time to think of complex and dynamic multi-host MTC maintenance communities where several wild and domestic species and the environment contribute to pathogen maintenance. Regarding the global situation of animal TB, many industrialized countries have reached the Officially Tuberculosis Free status. However, infection of cattle with M. bovis still occurs in most countries around the world. In low- and middle-income countries, human and animal TB infection is endemic and bovine TB control programs are often not implemented because standard TB control through testing and culling, movement control and slaughterhouse inspection is too expensive or ethically unacceptable. In facing increasingly complex epidemiological scenarios, modern integrated disease control should rely on three main pillars: (1) a close involvement of farmers including collaborative decision making, (2) expanding the surveillance and control targets to all three host categories, the environment, and their interactions, and (3) setting up new control schemes or upgrading established ones switching from single tool test and cull approaches to integrated ones including farm biosafety and vaccination.

15.
STAR Protoc ; 4(3): 102557, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37691149

RESUMEN

Paratransgenesis through genetic manipulation of symbiotic or commensal microorganisms has been proposed as an effective and environmentally sound approach for the control of vector-borne diseases, including tick bite-related pathologies, and reducing pathogen transmission. Here, we present a protocol for Sphingomonas transformation with Anaplasma phagocytophilum major surface protein 4 and heat shock protein 70. We describe a step-by-step protocol for in vitro study of interactions between transformed Franken Sphingomonas and Ixodes scapularis ISE6 tick cells during A. phagocytophilum infection. For complete details on the use and execution of this protocol, please refer to Mazuecos et al. (2023).1.


Asunto(s)
Anaplasma phagocytophilum , Coinfección , Ixodes , Sphingomonas , Animales , Anaplasma phagocytophilum/genética , Sphingomonas/genética , Ixodes/genética , Ixodes/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo
17.
Front Immunol ; 14: 1172734, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37398646

RESUMEN

The opinion flows from Introduction to the immunological quantum that requires a historical perspective, to Quantum vaccine algorithms supported by a bibliometric analysis, to Quantum vaccinomics describing from our perspective the different vaccinomics and quantum vaccinomics algorithms. Finally, in the Discussion and conclusions we propose novel platforms and algorithms developed to further advance on quantum vaccinomics. In the paper we refer to protective epitopes or immunological quantum for the design of candidate vaccine antigens, which may elicit a protective response through both cellular and antibody mediated mechanisms of the host immune system. Vaccines are key interventions for the prevention and control of infectious diseases affecting humans and animals worldwide. Biophysics led to quantum biology and quantum immunology reflecting quantum dynamics within living systems and their evolution. In analogy to quantum of light, immune protective epitopes were proposed as the immunological quantum. Multiple quantum vaccine algorithms were developed based on omics and other technologies. Quantum vaccinomics is the methodological approach with different platforms used for the identification and combination of immunological quantum for vaccine development. Current quantum vaccinomics platforms include in vitro, in music and in silico algorithms and top trends in biotechnology for the identification, characterization and combination of candidate protective epitopes. These platforms have been applied to different infectious diseases and in the future should target prevalent and emerging infectious diseases with novel algorithms.


Asunto(s)
Vacunas , Vacunología , Animales , Humanos , Antígenos , Epítopos
18.
Phys Chem Chem Phys ; 25(30): 20473-20484, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37431774

RESUMEN

Prebiotic chemistry one-pot reactions, such as HCN-derived polymerizations, have been used as stimulating starting points for the generation of new multifunctional materials due to the simplicity of the processes, use of water as solvent, and moderate thermal conditions. Slight experimental variations in this special kind of polymerization tune the final properties of the products. Thus, herein, the influence of NH4Cl on the polymerization kinetics of cyanide under hydrothermal conditions and on the macrostructures and properties of this complex system is explored. The kinetics of the process is consistent with an autocatalytic model, but important variations in the polymerization reaction are observed according to a simple empirical model based on a Hill equation. The differences in the kinetic behaviour against NH4Cl were also revealed when the structural, morphological, thermal, electronic and magnetic properties of the synthesized cyanide polymers were compared, and these properties were evaluated by elemental analysis, FTIR, XPS, UV-vis, and ESR spectroscopies, X-ray diffraction, SEM and thermoanalytical techniques. As a result, this hydrothermal prebiotic polymerization is not only pH dependent, as previously thought, but also ammonium subservient. From this result, a hypothetical reaction mechanism was proposed, which involves the active participation of ammonium cations via formamidine and serves as a remarkable point against previous reports. The results discussed here expand the knowledge on HCN wet chemistry, offer an extended view of the relevant parameters during the simulation of hydrothermal scenarios and describe the production of promising paramagnetic and semiconducting materials inspired by prebiotic chemistry.

19.
Parasit Vectors ; 16(1): 242, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468955

RESUMEN

BACKGROUND: Alpha-Gal syndrome (AGS) is a tick-borne food allergy caused by IgE antibodies against the glycan galactose-alpha-1,3-galactose (α-Gal) present in glycoproteins and glycolipids from mammalian meat. To advance in the diagnosis and treatment of AGS, further research is needed to unravel the molecular and immune mechanisms underlying this syndrome. The objective of this study is the characterization of tick salivary components and proteins with and without α-Gal modifications involved in modulating human immune response against this carbohydrate. METHODS: Protein and α-Gal content were determined in tick saliva components, and proteins were identified by proteomics analysis of tick saliva fractions. Pathophysiological changes were recorded in the zebrafish (Danio rerio) model after exposure to distinct Ixodes ricinus tick salivary components. Serum samples were collected from zebrafish at day 8 of exposure to determine anti-α-Gal, anti-glycan, and anti-tick saliva protein IgM antibody titers by enzyme-linked immunosorbent assay (ELISA). RESULTS: Zebrafish treated with tick saliva and saliva protein fractions combined with non-protein fractions demonstrated significantly higher incidence of hemorrhagic type allergic reactions, abnormal behavioral patterns, or mortality when compared to the phosphate-buffered saline (PBS)-treated control group. The main tick salivary proteins identified in these fractions with possible functional implication in AGS were the secreted protein B7P208-salivary antigen p23 and metalloproteases. Anti-α-Gal and anti-tick salivary gland IgM antibody titers were significantly higher in distinct saliva protein fractions and deglycosylated saliva group when compared with PBS-treated controls. Anti-glycan antibodies showed group-related profiles. CONCLUSIONS: Results support the hypothesis that tick salivary biomolecules with and without α-Gal modifications are involved in modulating immune response against this carbohydrate.


Asunto(s)
Hipersensibilidad a los Alimentos , Ixodes , Mordeduras de Garrapatas , Animales , Humanos , Pez Cebra/metabolismo , Saliva , Galactosa , Inmunoglobulina E , Hipersensibilidad a los Alimentos/etiología , Proteínas de Artrópodos , Inmunoglobulina M , Mamíferos
20.
Vector Borne Zoonotic Dis ; 23(9): 441-446, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37462912

RESUMEN

Background: Lyme borreliosis (LB) caused by Borrelia burgdorferi sensu lato complex spirochetes is one of the tick-borne diseases with high prevalence and social/economic burden in the United States, Spain, and other European countries. The objective is to address limited information available about the incidence, prevalence, and symptoms of LB, current prevention, and treatment interventions that are not adequately focused and thus not very effective against this disease. Methods: To address these limitations, in this study, we used a citizen science approach to evaluate the LB-associated risks and implementation of control interventions in Spain. A total of 405 participants in the survey were included in the analysis. Responses to the questionnaire were received during January-July 2022. The questionnaire contained qualitative and quantitative questions. Homogeneity among binary variables was analyzed using a Fisher's exact test. Results: Despite limitations of the study associated with response to the questionnaire and information on tick species, the results evidenced the effect of factors such as age, gender, tick bites, disease clinical signs, comorbidities such as alpha-gal syndrome, health care services, and treatment effectiveness affecting LB. Conclusions: The main conclusions of the study highlight the need for better surveillance of tick infestations, pathogen infection, and diagnosis of LB and related comorbidities. To advance in disease prevention, diagnosis, and treatment, new interventions need to be developed and implemented in both public and private health care services. Providing access to these results to the society, health care system, and scientists is important to further advance in disease surveillance, diagnosis, control, and prevention.


Asunto(s)
Ciencia Ciudadana , Ixodes , Enfermedad de Lyme , Animales , España/epidemiología , Enfermedad de Lyme/epidemiología , Enfermedad de Lyme/prevención & control , Enfermedad de Lyme/diagnóstico , Enfermedad de Lyme/veterinaria , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...